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[1] Cahyarini et al. [2011] take exception to the
methods used and the results reported in our recent
paper [DeLong et al., 2010a]. The traditional
approach to estimating sea surface temperature
(SST) from variations in coral skeletal geochemistry
involves calibrating measurements of SST from the
coral’s location with the observed geochemical
variations (e.g., Sr/Ca and d18O). Individual proxy
calibrations at individual reef locations are not
the same, but generally converge to community‐
accepted values and associated uncertainties [e.g.,
Corrège, 2006]. SST estimates based on geochem-
ical variations in fossil corals present even larger

challenges because additional factors (e.g., changes
in seawater chemistry, postdepositional alteration,
and reef geomorphology) must be accounted for in
the SST reconstruction. We (i.e., T. M. Quinn, his
students, and associates) understand and respect
these challenges, which we included in our research
strategy.

[2] Cahyarini et al. [2011] note that large dis-
crepancies can occur in coral Sr/Ca; we do not dis-
pute this fact and we discuss in detail the sources of
differences in the DeLong et al. [2010a] study. We
note that many of the differences can be controlled
for by (1) careful selection of coral colonies to be

Copyright 2011 by the American Geophysical Union 1 of 5

http://dx.doi.org/10.1029/2010GC003461


sampled for calibration studies, (2) following con-
sistent sampling procedures, and (3) constraining
environmental factors. Comparisons of mean coral
Sr/Ca should be made with the same parameters to
eliminate known effects due to species differences,
sampling effects, and environmental settings (e.g.,
water depth and lagoon versus open ocean). These
differences are problematic for fossil coral studies
where water depth and environmental setting are
difficult to constrain and we discuss in detail the
possible implications for reconstructing temperature
from coral geochemistry in the DeLong et al.
[2010a] study.

[3] Indeed, we have explicitly investigated the
source of variability in coral Sr/Ca and d18O over the
years at several reef sites and with multiple coral
genera [Stephans et al., 2004; Smith et al., 2006;
DeLong et al., 2007, 2009]. We have also published
papers noting the deficiencies in the coral Sr/Ca‐
SST proxy [Quinn and Taylor, 2006; Smith et al.,
2006; Kilbourne et al., 2008]. These and other
studies [Leder et al., 1996; Alibert and McCulloch,
1997; Cohen and Hart , 1997; Marshall and
McCulloch, 2002; Swart et al., 2002; Cohen et al.,
2004; Giry et al., 2010] have confirmed that
proper physical sampling of the coral skeleton is
critical in terms of producing robust, reproducible
coral Sr/Ca and d18O time series.

[4] We evaluated the work on modern corals from
Tahiti because it is the logical starting point for our
paper on fossil corals from Tahiti. When we wrote
the Tahiti fossil coral paper, there was one modern
study with data publicly available for interpretation
of the fossil coral data [Boiseau et al., 1998] and two
studies by Cahyarini et al. [2008, 2009] for which
data was requested and denied. In a subsequent
request, Cahyarini agreed to provide monthly coral
Sr/Ca summaries only (S. Y. Cahyarini, personal
communication, 2009). Therefore, we used the
available data from Boiseau et al. [1998] to compare
the possible range of coral d18O variability with the
nine year long fossil coral record [DeLong et al.,
2010a, Figure 4]. We preferred to do the same
with the coral d18O and Sr/Ca data from Cahyarini
[2006] and Cahyarini et al. [2008, 2009], but that
was not possible, as the data from those studies was
not made available for the interpretation of the fossil
coral record. Instead, we used a range of coral Sr/Ca
slopes from similar studies of Porites in the South
Pacific and a mean annual calibration based on
South Pacific Porites from the same laboratory. We
decided we could not make a reliable determination
seawater d18O (d18Osw) due to the lack of data
access and uncertainties in the modern Tahiti cali-

bration study by Cahyarini et al. [2009] as we dis-
cuss in the DeLong et al. [2010a] study. Therefore,
the Cahyarini et al. [2008] study was not discussed
or referenced in the study by DeLong et al. [2010a].
In regards to the comment byCahyarini et al. [2011,
paragraph 2] that states “The magnitude of expected
d18Osw variations is smaller than the analytical error
of d18O and Sr/Ca,” Boiseau et al. [1998] measured
d18Osw seven times in their study at nearby Moorea
[see DeLong et al., 2010a, Figure 1] from March
1995 to April 1996 and found ∼0.45‰ seasonal
variability, which is an order of magnitude greater
than d18O analytical precision. The comment
by Cahyarini et al. [2011, paragraph 2] states,
“…modern d18Osw variations at Tahiti are too small
to measurably affect coral d18Osw.” This is clearly
incorrect when actual d18Osw data are examined.

[5] Our evaluation of the Tahiti fossil coral record
for interannual and seasonal variability consid-
ered a range of coral Sr/Ca and d18O slopes for
Porites spp., including those of Cahyarini et al.
[2009]. The range of coral Sr/Ca slopes (–0.05 to
–0.075 mmol/mol/°C) we used includes slope values
(–0.05 mmol/mol/°C) presented by Cahyarini et al.
[2009] for corals TH1 and TH1B. Had we included
the slope for TH2 (–0.04 mmol/mol/°C) from
Cahyarini et al. [2009], the interannual and seasonal
differences between coral d18O and Sr/Ca would
have been even larger than those presented in the
DeLong et al. [2010a] study. The larger seasonal
cycle in SST is inconsistent with model results
for the early Holocene [Kutzbach et al., 1998]
that reveals little change in tropical Pacific SST
seasonality.

[6] Cahyarini et al. [2011, paragraph 2] wrote that
we “…speculate that a d18O‐SST relationship of
−0.18 (±0.04) per mil/°C could indicate contribu-
tions of d18O seawater, as inorganic aragonite has
a d18O‐SST relationship of −0.22 per mil/°C.”
This statement is not correct. A slope of –0.2‰/°C
for d18O was assumed by DeLong et al. [2010a,
Figure 5] for the seasonal and interannual tempera-
ture comparison. The value is close to the slopes of
–0.17 to –0.19‰/°C for Porites that was carefully
established during drought years [Gagan et al.,
1998] and with in situ monthly seawater d18O data
[Shen et al., 2005]. In addition, varying the d18O
slope from –0.18 to –0.22‰/°C does not change the
results of our study; the seasonal variability differ-
ence between coral d18O and Sr/Ca is approximately
the same or greater. The interannual anomalies
reveal a shift to cold/wet and warm/dry regardless of
d18O slopes (–0.18 to –0.22‰/°C) used and we did
not quantify the difference or the d18O of seawater
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due to the uncertainties with the modern calibra-
tion studies.

[7] We chose to develop and apply a regional south
Pacific Sr/Ca to SST and d18O to SST calibration
based on themean values of each variable. Themean
calibrations presented by DeLong et al. [2010a]
were (1) selected from studies of the same coral
genus Porites, (2) analyzed in the same laboratory
following the same analytical procedures with the
same laboratory standards, (3) microsampled fol-
lowing the method outlined by Quinn et al. [1996],
(4) carefully selected and completely submerged
coral colonies located in areas exposed to open
ocean conditions for paleoclimate reconstructions,
and (5) not sampled along suboptimal mesoscale
growth structures. Our thought was not to produce
a “universal” set of equations, but rather we hoped
to produce a quantitative relationship between
Porites spp. geochemistry and temperature that
could be used over a range of temperatures and
environmental conditions likely to have been
observed in the south Pacific over the last 20 ka.
Cahyarini et al. [2011] choose to create a figure
depicting mean Sr/Ca determinations for two dif-
ferent coral genera (Porites and Diploria), one from
the Indian and Pacific Oceans and the other from
the Atlantic Ocean, from 7 published and 11 non-
published data sets. Species effects between dif-
ferent coral genera for coral Sr/Ca have been
documented with ranges up to 0.231 mmol/mol
[Harriss and Almy, 1964; Livingston and Thompson,
1971;Weber, 1973; Oomori et al., 1982; Cross and
Cross, 1983; de Villiers et al., 1994; DeLong et al.,
2009]. If we compare coral Sr/Ca from Porites and
Diploria strigosa [Dunn et al., 2008; DeLong et al.,
2009] from locations with similar mean temperature
that were measured by the same analytical proce-
dures with the same standards, we find mean dif-
ferences up to 0.294 mmol/mol. We note that a
recent studies with D. strigosa examined different
sampling methods (varying drill bit size) along the
theca, septa, and columella of this species found
significant sampling heterogeneities that shifted
mean coral Sr/Ca by 0.062 to 0.266 mmol/mol [Giry
et al., 2010]. A similar comparison with the Atlantic
species Montastraea faveolata with Porites reveals
a mean difference of 0.208 mmol/mol [Kilbourne
et al., 2004, 2008]. These data demonstrate that
species effects are apparent in coral Sr/Ca thus
including different coral genera in a calibration is
inappropriate.

[8] We estimated a mean SST of 24.3°C ± 0.3°C
for the 9.5 ka Tahiti coral using the regional Porites
Sr/Ca to SST relationship. We note that the ±0.3°C

uncertainty is only the error of regression hence, is
a minimal estimate of uncertainty. We devoted a
section of the discussion to the possible sources of
uncertainties and state in our conclusions [DeLong
et al., 2010a, paragraph 25] “We recognized a
large uncertainty in coral Sr/Ca is related to or the
combined effects of differences observed between
corals from the same region, various water depths,
local environmental conditions, and possible unde-
tected diagenetic alteration.”

[9] Cahyarini et al. [2011] note a few recently
published papers that bear on climate reconstruc-
tions using fossil corals. We note that the Abram
et al. [2009] paper was in the review process
simultaneously with DeLong et al. [2010a], but that
paper was published a fewmonths prior to our paper.
Abram et al. [2009] analyzed a suite of modern and
fossil corals from the Indo‐Pacific warm pool for
Sr/Ca using a variety of sampling resolutions
(monthly, yearly, and bulk). Six modern corals at
Mentawai Islands have a range of record lengths,
sampling resolution, and mean Sr/Ca values; the
minimum mean Sr/Ca is observed in a record that
spans 1982 to 1993 with yearly sampling and the
maximum mean Sr/Ca is observed in a record that
spans 1993 to 1997.2 with monthly sampling. Var-
iations in sampling resolution can produce mean
shifts in coral geochemistry [Leder et al., 1996;
Quinn et al., 1996; DeLong et al., 2007]. Addi-
tionally, no information is given regarding water
depth or environment in the study by Abram et al.
[2009, Table 1]. The Muschu/Koil Island site in
the study by Abram et al. [2009] has a smaller mean
difference (0.05 mmol/mol) between the corals
sampled with the same resolution over the same time
interval. The fossil coral study completed by Abram
et al. [2009] is rare in that it uses multiple fossil coral
samples, many of which overlap in age, to reach
their conclusions. Such an opportunity was not
available for our work at Tahiti.

[10] Regarding the Inoue et al. [2007] experimental
results, the largest variability in coral Sr/Ca was
observed at the temperature extremes of the exper-
iment in which the corals were subjected to a con-
stant temperature for 142 days. The corals in the
Inoue et al. [2007] study with the largest vari-
ability in mean Sr/Ca (∼0.4 mmol/mol) were those
exposed to the extreme temperatures (21°C and
29°C) for a prolonged period. These prolonged
thermal conditions may have stress the corals and it
has been suggested that stress may be reflected in
coral geochemistry [Marshall and McCulloch,
2002; Fallon et al., 2003; Mitsuguchi et al.,
2008].
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[11] Last, we would like to take this opportunity
to compare the results from DeLong et al. [2010a]
with another IODP Expedition 310 study that was
published while our paper was in press. Inoue et al.
[2010] examined coral Mg/Ca and U/Ca as a proxy
for SST and Ba/Ca and Cd as an upwelling proxy.
Inoue et al. [2010] found a mean SST of ∼22°C for
the 9.8 ka, which is ∼2°C colder than that reported
by DeLong et al. [2010a] for 9.5 ka. Additionally,
Inoue et al. [2010] found that the colder tempera-
tures between 12.6 and 9.8 ka were associated with
higher Ba/Ca and Cd levels suggesting upwelling
and/or entrainment of subsurface water into the
mixed layer was enhanced around Tahiti in the
early Holocene. This evidence supports our colder
temperature reconstruction and our hypothesis of
localized upwelling for the early Holocene in Tahiti.
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