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ABSTRACT

Rift-related magmatism in the northern-
most Gulf of California and the adjacent sub-
aerial Salton Trough and Cerro Prieto basins 
comprises intermediate to rhyolitic surfi cial 
and buried lava fl ows and domes, including 
their xenolith cargo. In addition, geothermal 
drill wells frequently penetrate subsurface 
gabbroic to granitic sills and dikes, which 
intruded into Colorado River delta fl uviatile 
and lacustrine sediments. Combined single-
crystal U-Th-Pb and (U-Th)/He zircon ages 
reveal late Pleistocene to Holocene eruption 
ages for three volcanic centers in adjacent 
rift basins (from N to S): Salton Buttes (erup-
tion age: 2.48 ± 0.47 ka; 95% confi dence), 
Cerro Prieto (maximum eruption age: 73 ± 
7 ka), and Roca Consag (eruption age: 43 ± 
6 ka). U-Th zircon and allanite crystalliza-
tion ages are close to the eruption ages, with 
the exception of Roca Consag lava, the zir-
con population of which is dominated by 
zircon with ca. 1 Ma crystallization ages, a 
population interpreted to be recycled from 
an unknown crustal source underlying the 
Wagner basin. Nd isotopic ratios for sub-
surface micro gabbros from Cerro Prieto 
(εNd = +8.9) overlap with values for mid-
oceanic-ridge basalts (MORB) from the East 
Pacifi c  Rise, adjacent to the southern Gulf 
of California. Cerro Prieto microgranites 
and Salton Sea basaltic xenoliths have simi-
larly elevated εNd values. The lowest εNd value 
for late Pleistocene–Holo cene igneous rocks 
from the northern Gulf of California is for 
Cerro Prieto dacitic lava (εNd = +0.6). This 

value implies minor (<20%) assimilation of 
continental crustal rocks, which, however, is 
an upper limit because of crystal-scale evi-
dence for magma contamination by uncon-
solidated sediment at the time of eruption. 
Zircon crystals in felsic rocks (rhyolite lavas, 
intrusive microgranites, and granophyre xe-
noliths) have trace-element  and submantle 
δ18O compositions that are robust indicators 
for a mafi c source that has exchanged oxygen 
by interacting with meteoric hydrothermal 
fl uids. Collectively, these data imply that oce-
anic rifting has initiated in the Salton Trough 
and Cerro Prieto basins. There, MORB-type 
magmas formed mafi c intrusions within thick 
sedimentary basin fi ll, where they became ex-
posed to deep-reaching hydrothermal fl uids. 
Diverse intermediate- to high-silica rhyolitic 
magmas that are prevalent at the surface 
are produced by fractional crystallization of 
mafi c parental magmas with minor assimila-
tion of sediments or pre-rift basement rocks, 
and by partial melting of hydrothermally al-
tered mafi c intrusions.

INTRODUCTION

The southwestern North American conti-
nental margin evolved from a convergent plate 
boundary into a series of rift basins and embry-
onic oceanic spreading centers interconnected 
by NW-SE–oriented transform fault systems 
during the late Cenozoic (Lonsdale, 1989; Oskin 
and Stock, 2003). This plate boundary reconfi g-
uration encompasses a transition between fun-
damentally different magma production mecha-
nisms: during subduction, melting is triggered 
by hydration of the mantle wedge, whereas 
magmatism in continental rifts and divergent 

margins is due to decompression melting in the 
mantle, which ultimately produces composition-
ally uniform, nearly anhydrous mid-ocean-ridge 
basalts (MORB). First-order compositional dif-
ferences often result from the transition between 
these two magmatic regimes, where subduction 
is associated with predominantly intermedi-
ate compositions, whereas bimodal suites are a 
hallmark of continental rifting (e.g., Bryan and 
Ernst, 2008). During incipient rifting, the prox-
imity to sources of continent-derived detritus  
shed into rift basins can also exert strong con-
trol on the compositional diversity of mag-
mas and their representation in the geological 
record. These controls include (1) density fi lter-
ing of magmas where negatively buoyant mafi c 
magmas stall within sequences of low-density 
sediments so that the record of surfi cial vol-
canic rocks is not representative of magma fl ux 
at depth (e.g., Fuis et al., 1984); (2) rapid sub-
sidence and burial, which conceal earlier phases 
of magmatism (e.g., Herzig, 1990; Hurtado-
Brito, 2012); (3) contamination of magmas dur-
ing ascent through thick sequences of sedimen-
tary basin fi ll (through melting and assimilation, 
or mingling between magma and sediment; e.g., 
Gibson et al., 1997); and (4) metamorphism and 
hydrothermal alteration caused by fl uid circu-
lation through porous sediments in magmati-
cally active rift zones (e.g., Einsele et al., 1980; 
McKibben  et al., 1988).

In order to better constrain the origins of 
rift-related magmatism and the interaction 
between magma and sediment during conti-
nental breakup, we studied a comprehensive 
suite of surface and subsurface magmatic rocks 
from the northern Gulf of California, consist-
ing of samples from two subaerial rift basins 
(Salton Trough, Cerro Prieto) and the submarine  
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Wagner  basin (Fig. 1). In addition to whole-
rock geochemical analysis, we also focused 
on  single-crystal geochemical and geochrono-
logical analysis of zircon as a robust indicator 
mineral. Single-crystal zircon geochronology 
permits us to constrain magmatic crystallization 
and eruption ages at high temporal resolution, 
even for subsurface rocks highly altered by geo-
thermal activity. Alteration-resistant geochemi-
cal indicators such as whole-rock Nd isotopes 
and zircon oxygen isotopes indicate dominantly 
MORB-type magma sources for parental mag-
mas, with remelting of hydrothermally altered 
juvenile mafi c crust as an important mechanism 
to produce high-silica magma compositions. 
Thick sedimentary rift basin infi ll controls 
magma ascent and biases extrusive magma-
tism toward silicic compositions, but melting of 
sediment or prerift basement overall contributes 
negligibly to even the most silicic magma com-
positions.

GEOLOGICAL BACKGROUND

Mid-Miocene to Holocene 
Magmatic Evolution

Baja California and western Sonora are well-
known examples of diverse, and in part unusual 
postconvergent magma compositions (e.g., Till 
et al., 2009; Calmus et al., 2011). These are 
predated by an earlier phase of arc vol canism 
related to the terminal phase of subduction of 
Farallon plate fragments (20–12 Ma). Subduc-
tion-related rocks are widespread along the 
entire eastern margin of the Baja California 
peninsula (Fig. 1). They are termed Comondú  
volcanic group in the southern half of the penin-
sula (e.g., Hausback, 1984; Sawlan, 1991; 
Umhoefer et al., 2001), with equivalent rocks 
also preserved in the northern half (Martín 
et al., 2000). After cessation of subduction, 
postsubduction basaltic fi ssure eruptions (e.g., 
Bellon et al., 2006; Benoit et al., 2002) and 
peralkaline silicic ignimbrite volcanism initi-
ated after ca. 12 Ma and lasted until ca. 8 Ma 
(Mora-Klepeis and McDowell, 2004; Oskin and 
Stock, 2003; Vidal-Solano et al., 2008). These 
silicic rocks are mostly exposed in northwestern 
mainland Mexico, but remnants of pyroclastic 
fl ow deposits are locally preserved along the 
eastern margin of Baja California (Ferrari et al., 
1999; Oskin and Stock, 2003). Contemporane-
ous with an initial phase of marine incursion 
into the proto–Gulf of California, dominantly 
bimodal volcanism persisted between ca. 8 and 
3 Ma, for example, in the Puertecitos volcanic 
fi eld (Fig. 1; Martín-Barajas et al., 1995).

Post–3 Ma magmas in the southern Gulf of 
California are largely tholeiitic basalts, and their 

associated vents are confi ned to the axes of en-
echelon basins separated by NW-SE–trending 
right-lateral transform faults (e.g., Batiza, 1978; 
González-Escobar et al., 2009, 2010). Toward 
the mouth of the Gulf of California, there is 
clear evidence from magnetic striping for sea-
fl oor spreading (Lonsdale, 1989), whereas 
to the north the basins are blanketed by thick 
deposits of continental detritus, which prohibit 
geomagnetic verifi cation of oceanic spreading. 
Seismic-refl ection data (Martín et al., 2013), 
however, indicate ~40–60-km-wide, newly 
formed oceanic crust in the Tiburón, Delfín, and 

Wagner basins. Numerous magmatic intrusives, 
volcanic edifi ces, and their pyroclastic deposits 
have been seismically imaged within the Upper 
and Lower Delfi n basins, and several volcanic 
edifi ces exist along the Ballenas transform fault 
and the Volcanes fault zone along the edge of 
the Baja California continental crust (Fig. 1; 
Persaud et al., 2003; Hurtado-Brito, 2012). Iso-
lated late Pleistocene to recent volcanic centers 
are also scattered outside the basins along the 
eastern coast of Baja California: Tres Vírgenes 
(Capra et al., 1998; Schmitt et al., 2006, 2010); 
Isla San Luis (Paz-Moreno and Demant, 1999); 
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and within the Ballenas Channel (Martín-Barajas 
et al., 2008).

Of the three northernmost basins in the Gulf 
of California, the Salton Trough and Cerro 
Prieto  basins are subaerial due to their proximity 
to the Colorado River delta. The origin of these 
basins has long been interpreted to be analo-
gous to the fully oceanic basins farther south 
in the Gulf of California (Elders et al., 1972). 
The Wagner and Consag basins adjacent to the 
south are submarine, albeit with average water 
depths that are much shallower than in the cen-
tral and southern Gulf of California. Although 
surfi cially emplaced basalt is absent in the sub-
aerial basins, mafi c intrusions are demonstrably 
abundant at depth based on drill well penetra-
tion, and their existence is also evident from 
xenolith populations, and from the geochemical 
characteristics of consanguineous felsic lavas 
(see later herein).

A particular puzzling phenomenon is the 
persistence, and in some locations re-initiation, 
of magmatism with subduction-type chemical 
affi nities along strike of the Gulf of California 
rift (Bigioggero et al., 1995; Martín-Barajas 
et al., 1995; Capra et al., 1998; Negrete-Aranda 
and Canon-Tapia, 2008). Within the northern-
most Gulf of California rift system (Fig. 2), such 
diverse compositional types of volcanism exist 
side-by-side to the present day: In the Salton 
Trough, a prominent silicic gap exists between 
basaltic and rhyolitic end members, whereas 
silicic to intermediate magma compositions 
dominate the adjacent Cerro Prieto basin (Figs. 
3 and 4). Multiple models for this wide spec-
trum of postconvergent magmatism in the Gulf 
of California have been proposed: subduction 
metasomatism enhancing mantle fertility com-
bined with thermal insulation of the mantle by 
thick sediments (Lizarralde et al., 2007), melt-
ing of slab remnants (Aguillon-Robles et al., 
2001) or lower-crustal metabasites (Castillo, 
2008), variable degrees of peridotite melting 
(Robinson et al., 1976), fractional crystalliza-
tion of basaltic magma (Herzig, 1990; Herzig 
and Jacobs, 1994), partial melting of granitic 
basement (Reed et al., 1984), assimilation of 
continental crust concomitant with crystal frac-
tionation (Martín-Barajas and Weber, 2003; 
Vidal-Solano et al., 2008), and partial melting of 
hydrothermally altered basaltic crust (Schmitt 
and Vazquez, 2006).

Recent Volcanism in the Salton Trough, 
Cerro Prieto, and Wagner Basins

In the Salton Trough, the series of fi ve rhyo-
lite domes (from NE to SW: Mullet Island, two 
domes of Red Island, Rock Hill, and Obsidian 
Butte) is collectively termed the Salton Buttes 

(Fig. 2). Early pyroclastic deposits overlying 
lacustrine sediments of Pleistocene–Holocene 
Lake Cahuilla are covered by lava fl ows and 
domes up to 40 m thick, but their elevations are 
entirely below sea level. Domes show wave-cut 
benches, and rounded pumice rafts are present 
at paleoshorelines, suggesting eruption prior to 
or during a highstand of Lake Cahuilla, the natu-
ral precursor of the Salton Sea. Because all fi ve 
domes are petrologically similar and occur on a 
single N-S–trending lineament, they are likely 
connected by a common feeder dike (Kelley 
and Soske, 1936; Robinson et al., 1976). Salton 
Buttes rhyolite lavas are crystal poor, with only 
minor plagioclase phenocrysts present. They 
contain, however, a diverse assemblage of 
xenoliths of basalt, granite, and metasediment 
(Kelley and Soske, 1936; Robinson et al., 1976; 
Schmitt and Vazquez, 2006). Basaltic xenoliths 
have depleted trace-element signatures and 
elevated εNd (143Nd/144Nd) coupled with low 
87Sr/86Sr, characteristic of an East Pacifi c Rise 
mantle source (Herzig and Jacobs, 1994; Rob-
inson et al., 1976). The granitic xenoliths are 
derived from juvenile crust rather than base-
ment and originated from remelting of hydrated 

mafi c crust (Schmitt and Vazquez, 2006). This 
is supported by the presence of rhyolitic glass, 
representing partial melt in the basaltic xeno-
liths (Robinson et al., 1976).

Cerro Prieto basin contains only one volcano 
(Fig. 2), a composite lava dome that rises to 223 m 
above sea level and is surrounded by periph-
eral autobrecciated lava injections into uncon-
solidated Colorado River deltaic sediments. The 
dacitic lava is fi ne grained and crystal poor, with 
rare plagioclase phenocrysts present. Rounded 
xenoliths of indurated and baked sediments are 
locally enclosed in the autobrecciated lava.

Roca Consag (Fig. 2) is an isolated volcanic 
plug located near the SW terminus of the sub-
marine Wagner basin (González-Escobar et al., 
2010). It consists of microphyric low-K dacite, 
and likely subvolcanic intrusive rock. Its spatial 
extent is ~0.002 km2, and its elevation is ~40 m 
above sea level.

Previous radiometric dating for the Salton 
Buttes and Cerro Prieto resulted in mostly K-Ar 
ages. For Salton Buttes obsidian, ages range 
from 33 ± 36 ka to <10 ka. Late Pleistocene 
to Holocene U-Th zircon crystallization ages 
exist for Salton Buttes obsidian and xenoliths 
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(Schmitt and Vazquez, 2006). Obsidian hydra-
tion methods yielded surface exposure age 
estimates between ca. 8.4 ka and ca. 2.5 ka 
(Friedman and Obradovich, 1981; cf. Anovitz 
et al., 1999). Recently published (U-Th)/He zir-
con ages for a granophyre xenolith indicate an 
eruption age for Red Island of 2.48 ± 0.47 ka 
(Schmitt et al., 2013). Two groundmass K-Ar 
analyses for Cerro Prieto are comparatively 
imprecise at 100 ± 60 ka and 120 ± 70 ka (Reed 
et al., 1984), with no radiometric ages available 
for Roca Consag prior to this study.

Subsurface Magmatism

Earlier volcanic episodes in the northern Gulf 
of California rift basins are largely obscured 
due to rapid subsidence and sedimentation. 
However, geothermal drill wells have fre-
quently penetrated igneous rocks at various 
depths in the subsurface, suggesting long-lived 
and widespread magmatic activity. Subsurface 
igneous rocks are frequently hydrothermally 
altered and resided at reservoir temperatures 
of up to 390 °C (Schmitt and Hulen, 2008). 

For the Salton Trough, U-Pb zircon ages for 
lava fl ows and pyroclastic deposits (including 
distal Bishop Ash) that are present at depths 
of ~1.7–2.2 km range between ca. 420 ka and 
760 ka, yielding subsidence and sedimenta-
tion rates of ~2–4 mm/yr (Schmitt and Hulen, 
2008). At depth, these Pleistocene sediments are 
presently undergoing prograde metamorphism, 
with neoblastic biotite and garnet indicating 
temperatures >350 °C (McDowell and Elders, 
1980). Seismically, this zone of metamorphosed 
sediments is identifi ed as an ~10-km-thick 
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Figure 3. Major- and trace-
element variation diagrams 
for northern Gulf of California 
igneous rocks. Panel B shows 
compositional fi elds for melt-
ing of hydrous basaltic rocks 
under different water pressures 
(Thy et al., 1990). Thick dashed 
line in panel E is the limit of 
K2O enrichment from closed-
system mid-ocean-ridge basalt 
(MORB) fractionation (France 
et al., 2010). Solid and dashed 
arrows in panel H schematically 
indicate compositional trends 
for closed-system remelting, and 
fractional crystallization cou-
pled with assimilation of conti-
nental crustal material (AFC), 
respectively. Data sources: 
this study, and compiled from 
Robinson et al. (1976), Reed 
et al. (1984), Herzig and Elders 
(1988), and Herzig (1990).
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high-velocity section that also could contain an 
unknown volume of mafi c intrusive rocks (Fuis 
et al., 1984). Gravity and magnetic anomalies in 
the Salton Trough have also been interpreted as 
recording the presence of shallow mafi c intru-
sions (Kasameyer and Hearst, 1988).

From the geothermal operator at Cerro Prieto 
(Comisión Federal de Electricidad [CFE]), we 
obtained well cuttings identifi ed by core loggers 
as igneous rocks that were penetrated in several 
geothermal wells (Fig. 5). In total, ~100 cut-
ting samples from seven wells (E-30, M-194, 
NL-1, GV-2, M-201, M-203, M-205), each 
sample consisting of ~50–100 g of millimeter-
sized fragments sampled at 1 m intervals, were 
petrographically investigated using a binocu-
lar microscope, petrographic microscope, and 
scanning electron microscope (SEM).

In these wells, the shallow sections (to ~1.5 km 
depth in the SW and ~2.5 km in the NE) are com-
posed of unconsolidated sediments, whereas 
deeper sections are dominantly shale and quartz-
ite. Igneous samples comprise vol canic rocks at 
shallow levels (e.g., NL-1 1494 m; M-203 1608 
m) with thicknesses of ~20 m (Fig. 5). These 
volcanic rocks are aphyric, glassy, and vesicu-
lated, and they represent buried  pyroclastic fall-
out deposits. At greater depth, igneous rocks 
appear to be sill-like intrusions based on similar 
depths of intersection in neighboring wells (e.g., 
microgranites at ~3000 m in E-30 and NL-1). 
These intrusions are up to ~40 m in thickness, 
although exact determination is compromised 
by mixing between cuttings derived from dif-
ferent depth intervals. Mafi c intrusives are fi ne-
grained gabbroic rocks, with plagioclase and 
clinopyroxene as the dominant phenocrysts with 
ophitic texture and a brownish glassy to micro-

crystalline groundmass (e.g., E-30 3048 m; 
E-30 3069 m; M-201 3534 m; M-205 2579 m). 
Intrusive intermediate rocks are dominated by 
plagioclase with a trachytic texture (e.g., M-203 
3921 m; M-203 3954 m). Felsic intrusive rocks 
are leucocratic microgranites with plagioclase 
microphenocrysts surrounded by granophyric 
intergrowths of quartz and alkali-feldspar (e.g., 
E-30 3027 m). Opaque minerals, and in some 
cases sulfi des (sphalerite), zircon, and allanite, 
are present as accessory minerals (e.g., NL-1 
3129 m). Remarkably, gabbroic, intermediate, 

and felsic intrusive rocks occur in close spatial 
proximity within an ~20 m depth interval in 
some wells (e.g., between 3027 and 3048 m 
in well E-30; Fig. 5).

METHODS

Sampling

For accessory mineral geochronology and 
geochemistry (trace elements and oxygen iso-
topes), lava from Cerro Prieto and Roca Consag 
was sampled to complement published data for 
the Salton Buttes surface and subsurface rocks 
(Schmitt and Vazquez, 2006; Schmitt and Hulen, 
2008; Schmitt et al., 2013). We also extracted 
zircon from Cerro Prieto well cuttings, but only 
two felsic intrusives yielded juvenile zircon. 
Because of the requirement to process compara-
tively large amounts of samples (tens of grams) 
for heavy mineral separation, we acknowledge 
contamination of the cuttings by overlying wall 
rock in the wells. Whole-rock geochemical 
data (including Th, Sr, and Nd isotopes) were 
obtained from samples where literature data 
were unavailable or incomplete. For whole-rock 
geochemical analysis of cuttings, a gram-sized 
aliquot of magmatic fragments was handpicked 
under a binocular microscope, and thus contami-
nation by wall-rock fragments can be ruled out. 
For comparison, published whole-rock compo-
sitional and isotopic data were compiled (Rob-
inson et al., 1976; Herzig, 1990; Herzig and 
Jacobs, 1994; Schmitt and Hulen, 2008).

Figure 4. Spidergrams for late 
Pleistocene mafi c and intermedi-
ate rocks from Cerro Prieto and 
Roca Consag normalized to mid-
ocean-ridge basalt (N-MORB; 
Niu et al., 1999). Fluid-compati-
ble trace elements are plotted 
on left. Miocene subduction-
related intermediate volcanic 
rocks from northeastern Baja 
California (Martín et al., 2000) 
plotted for comparison show 
similar enrichments, despite the 
absence of ongoing subduction. 
Note that subduction-related  
addition of incompatible ele-
ments and contamination with continental crustal rocks lead to largely indistinguishable 
trace-element patterns. Data sources: this study, except Salton Buttes lava data, which are 
from Herzig and Elders (1988).
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Figure 5. Simplifi ed well logs showing distribution of igneous rocks 
in Cerro Prieto geothermal wells. Percentages of igneous cuttings 
per 3 m depth interval were visually estimated under a binocular 
microscope.
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Geochronology

U-Th and U-Pb Zircon
Zircon crystals for U-Th and U-Pb dating 

(Tables DR1 and DR21) were density separated 
from crushed rocks using heavy liquids. Clear 
and euhedral zircon crystals were subsequently 
handpicked, placed with a prism face onto a fl at 
indium (In) metal surface, and pressed into the 
In using a fl at tungsten carbide metal anvil and an 
arbor press. The In-mounted zircon crystals were 
ultrasonically cleaned in 1 N HCl and deionized 
water, and then coated with a gold layer, several 
tens of nanometers thick, to provide a conduc-
tive surface. Analysis spots on unsectioned crys-
tals are identifi ed as “rim,” whereas “interior” 
refers to crystals analyzed after sectioning and 
polishing to tens of micrometers using abra-
sives. For samples with too little material avail-
able for heavy mineral separation (e.g., NL-1), 
thin sections of cuttings were screened by SEM, 
and the interiors of accessory zircon and allanite 
were analyzed in situ.

Isotopic analysis was conducted by second-
ary ion mass spectrometry (SIMS) using the 
CAMECA IMS 1270 at the University of Cali-
fornia–Los Angeles (UCLA; techniques modi-
fi ed from Reid et al., 1997; Schmitt et al., 2006; 
Vazquez and Reid, 2004). The main differences 
to previously published methods are crystal rim 
analysis to ~5 μm depths at lateral beam diam-
eters of ~25–35 μm, and the use of dual electron 
multipliers separated by two atomic mass units 
in order to simultaneously collect background 
intensities at mass/charge ~244 and 230Th16O+ at 
mass/charge ~246. Dual collection reduces the 
magnet cycling time by ~20%. Primary beam 
currents (16O–) were 40–60 nA, and total analy-
sis duration per spot was 25 min. Zircon stan-
dard AS3 was used for Th/U relative sensitivity 
calibration and as an equilibrium zircon standard 
for which (230Th)/(238U) = 1.008 ± 0.007 (mean 
square of weighted deviates [MSWD] = 0.51; 
n = 33) was obtained on analyses interspersed 
with the unknowns. Zircon elemental concen-
trations were calculated from 238U16O+/90Zr2

16O4
+ 

intensity ratios calibrated on zircon stan-
dard 91500 with U = 81.2 ppm (Wieden beck 
et al., 2004).

U-Pb zircon analyses were conducted using 
the CAMECA IMS 1270 at UCLA following 
techniques outlined in Grove et al. (2003) and 
Schmitt et al. (2003). Zircons were handpicked 
from heavy-liquid mineral separates, embed-

ded in epoxy, and polished to expose crystal 
interiors. A 20 nA primary beam was focused 
onto a spot with ~15 μm diameter. Second-
ary ion intensities were acquired in 10 magnet 
cycles per analysis, resulting in a crater depth of 
~1 μm. Throughout the manuscript, we report 
and plot individual data points with 1σ errors, 
but we state average age uncertainties at 95% 
confi dence. Half-lives and isotopic ratios are 
from Jaffey et al. (1971) and Cheng et al. (2000).

(U-Th)/He Zircon
The (U-Th)/He age determinations were car-

ried out at the University of Kansas using labora-
tory procedures described in Biswas et al. (2007). 
In cases where unsectioned crystals where ana-
lyzed by SIMS, zircons were extracted from the 
mounts using a steel picking needle. Individual 
crystals were wrapped in Pt foil, heated for 10 
min at 1290 °C, and reheated until >99% of the 
He was extracted from the crystal. All ages were 
calculated using standard α-ejection corrections 
using morphometric analyses (Table 1; Farley 
et al., 1996). After laser heating, zircons were 
unwrapped from the Pt foil and dissolved using 
double-step HF-HNO3 and HCl pressure-vessel 
digestion procedures (Krogh, 1973). U, Th, and 
Sm concentrations were determined by isotope 
dilution–inductively coupled plasma–mass spec-
trometry (ID-ICP-MS) analysis. The laboratory 
routinely  analyzes zircon standards with indepen-
dently determined ages, and we report averages 
for Fish Canyon tuff zircons of 27.8 ± 0.1 Ma 
(1 relative standard deviation RSD% = 4%; n = 
285). Reported age uncertainties refl ect the 
reproducibility of replicate analyses of these 
laboratory standard samples (Farley et al., 2002), 
but for much younger zircons such as the ones 
analyzed here, analytical uncertainties are sig-
nifi cantly larger. We accounted for these by 
multiplying the average age uncertainty by the 
square-root of the MSWD.

Compositional and Isotopic Analysis

Major and Trace Elements in Whole 
Rocks and Zircon

Whole-rock compositional analysis of lava 
samples was conducted using X-ray fl uores-
cence (XRF) and ICP-MS analysis at University 
of Washington (Table 2). For cuttings from geo-
thermal well samples, major and trace elements 
were analyzed in bulk using electron microprobe 
analysis (EMPA) and SIMS, respectively, by the 
fused-bead method (Table 2; Nicholls, 1974). 
Fused-bead analysis minimizes sample con-
sumption, and aids in avoiding contamination by 
sedimentary rocks in the well cuttings because 
only small amounts of handpicked igneous frag-

ments are required. These were ground in an 
agate mortar, and the majority of powder was 
retained for Sr and Nd isotopic analysis. Only 
~100 mg samples of rock powder were fused 
into millimeter-sized glass beads using an elec-
trically heated tungsten crucible in an Ar atmo-
sphere. The glass beads typically contained ~1–4 
wt% of WO3 from the crucible material, and all 
data are reported normalized to 100% W-free. 
XRF and glass bead EMPA major elements for 
Cerro Prieto sample CP05–2 agree within ±5%, 
except for FeO and Na2O, which are ~6% and 
~10% lower in the fused beads compared to 
XRF values. Trace-element analyses of glasses 
and zircons (Table DR3 [see footnote 1]) were 
conducted by SIMS using energy-fi ltering to 
suppress molecular interferences modifi ed from 
the procedure in Monteleone et al. (2007). NIST 
SRM610 glass was used as a primary standard 
(Pearce et al., 1997), and accuracy was moni-
tored by analysis of BHVO-2 glass and 91500 
zircon. For most trace elements (in particular 
rare earth elements [REEs] + Y), SIMS abun-
dances for BHVO-2 (whole rock) and 91500 
(zircon) agree within ±12% with published val-
ues (Wilson, 1997; Liu et al., 2010).

Oxygen Isotopes in Zircon
Oxygen isotopes in zircon (Table DR4 [see 

footnote 1]) were analyzed by SIMS using 
multicollection dual Faraday cup analysis as 
described in Trail et al. (2007). Unknowns 
were bracketed by analysis of AS3 standard 
zircon with δ18O = 5.34‰ (Trail et al., 2007), 
and accuracy was estimated by analyzing 91500 
zircon as a secondary standard (δ18O = 9.98‰; 
Wieden beck et al., 2004), which was mounted 
in the same geometry as the unknowns. The 
deviation from the published value for 91500 
is ~0.2‰, commensurate with the SIMS repro-
ducibility of the primary standard AS3.

U-Th Isotopes in Whole Rocks
U and Th were separated using ion-exchange 

column methods described in Shen et al. (2003). 
Isotopic measurements were conducted on a 
Thermo Electron Neptune multicollector (MC) 
ICP-MS at the High-Precision Mass Spec-
trometry and Environment Change Labora-
tory (HISPEC ), Department of Geosciences, 
National Taiwan University (Shen et al., 2012). 
A triple-spike, 229Th-233U-236U, isotope-dilution 
method was employed to correct mass bias and 
determine uranium concentration (Shen et al., 
2002). Uncertainties in concentration and iso-
topic data include corrections for blanks, instru-
mental fractionation, multiplier dark noise, 
spectral interferences, and errors associated 
with quantifying the isotope composition in the 
spike solution (Table 3).

1GSA Data Repository item 2013358, Table DR1 
(U-Th zircon geochronology), Table DR2 (U-Pb 
zircon geochronology), Table DR3 (zircon trace ele-
ments), and Table DR4 (zircon oxygen isotopes), is 
available at http://www.geosociety.org/pubs/ft2013
.htm or by request to editing@geosociety.org.
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Sr-Nd Isotopes in Whole Rock
Sample preparation and element separation 

for Sr and Nd isotope analyses were carried out 
in PicoTrace® clean laboratory facilities at Cen-
tro de Investigación Científi ca y de Educación 
Superior de Ensenada (CICESE), Ensenada, 
Mexico. Approximately 100 mg aliquots of 
handpicked and powdered whole rock were 
heated at 165 °C for 15 h in a mixture of ~3–4 mL 
double-distilled concentrated HF, ~1 mL double-
distilled concentrated HNO3, and a few drops of 
distilled concentrated HClO4 using a PicoTrace 
DAS® pressure digestion system. After evapo-
ration, the residues were dissolved in 2 N HCl. 
Strontium and REEs were separated using quartz 
glass columns fi lled with Dowex AG50-WX8 
cation-exchange resin in HCl medium. Sm and 
Nd were separated in quartz-glass columns fi lled 
with LN-Spec® resin in HCl medium.

Neodymium isotope ratios were measured 
at Laboratorio Universitario de Geoquimica 
Isotopica (LUGIS), Instituto de Geofísica, Uni-
versidad Nacional Autónoma de México, using 
a Finnigan MAT 262 thermal ionization mass 

spectrometer (TIMS) equipped with eight vari-
able collectors and one fi xed Faraday collector 
in static mode. Strontium isotope compositions 
were measured either at LUGIS or at Scripps 
Institution of Oceanography, La Jolla, Califor-
nia, using a nine-collector, Micromass Sector 
54 TIMS. Isotopic ratios were corrected for 
mass fractionation by normalizing to 86Sr/88Sr = 
0.1194 and 146Nd/144Nd = 0.7219. Neodymium 
isotopes are reported relative to 143Nd/144Nd = 
0.51185 for the La Jolla Nd standard, and 
Sr isotopes are reported relative to NBS 987 
87Sr/86Sr = 0.71025. Because of the young age 
of the samples, no age corrections were applied, 
and elemental abundances are from XRF and 
SIMS whole-rock analyses (Table 2).

GEOCHRONOLOGY RESULTS

Salton Buttes

The best evidence for the youthfulness of 
the Salton Buttes is from published (U-Th)/He 
zircon ages for Red Island granophyre xenolith 

(Fig. 6), as well as U-Th zircon crystallization 
ages from rhyolite lavas and the granophyre  
xenolith (Fig. 7; data from Schmitt and Vazquez, 
2006; Schmitt et al., 2013). The Red Island 
(U-Th)/He zircon eruption age is 2.48 ± 0.47 ka 
(Schmitt et al., 2013). In the 230Th/232Th versus 
238U/232Th activity diagram, Salton Buttes zir-
con compositions fall in a wedge-shaped fi eld 
(“sphenochron”), with the low U-Th apex of this 
wedge pointing toward the whole-rock compo-
sition (Figs. 7A and 7B; Schmitt and Vazquez, 
2006; Schmitt et al., 2013). This indicates that 
the duration of zircon crystallization was pro-
tracted relative to the half-life of 230Th. U-Th 
zircon–whole rock model ages date back to ca. 
20 ka in the lavas, and ca. 40 ka in the grano-
phyre xenolith, with the youngest crystals and 
crystal populations yielding ages of 5.5 ± 1.2 ka 
and 2.9 ± 0.6 ka, respectively (Figs. 7A and 7B). 
The onset of crystallization therefore must have 
preceded the eruption by at least several tens of 
thousands of years, but zircon likely continued 
to crystallize until shortly before eruption.

Cerro Prieto

An extensive search for zircon in Cerro 
Prieto  by processing ~20 kg of rock yielded 
only scarce (~20) mostly small, rounded, and 
brownish zircon crystals in the heavy mineral 
fraction. Only three clear, needle-shaped zircon 
crystals were found, but these were too small 
for (U-Th)/He analysis because long stopping 
distances of alpha particles result in signifi cant 
loss of radiogenic 4He (Farley et al., 1996). 
U-Th and U-Pb dating confi rmed that most 
brownish Cerro Prieto  zircons are xenocrystic 
with ages between ca. 60 Ma and ca. 2 Ga (Fig. 
8A; Tables DR1 and DR2 [see footnote 1]), 
whereas the clear crystals (one crystal analyzed 
with multiple spots) display signifi cant U-Th 
disequilibrium. Combining all disequilibrium 
U-Th zircon analyses yields an isochron age of 
86 +37/–33 ka (MSWD = 1.3; n = 8; Fig. 6B). 
An alternative treatment of the data is to com-
bine individual zircon spots with the whole-rock 
composition to calculate model crystallization 
ages (Fig. 6B). In this case, we obtained model 
crystallization ages between 19 +24/–22 ka and 
121 +128/–80 ka, but whole-rock compositions 
for Cerro Prieto are likely affected by alteration 
(see following), and therefore this approach 
may result in age bias.

Xenocrystic zircon can be used to date the 
eruption age if 4He has degassed completely 
during contact with the magma (Blondes et al., 
2007). To test this approach, we analyzed indi-
vidual xenocrysts extracted from the lava sam-
ple, as well as zircon separated from an ~10-cm-
diameter baked mudstone enclave. This enclave 

TABLE 1. SUMMARY OF (U-Th)/He AND U-Th ZIRCON GEOCHRONOLOGY

Sample-grain
Age
(ka)

±
(ka)

U
(ppm)

Th
(ppm) Th/U

4He
(nmol/g)

Mass
(μg) Ft†

Cerro Prieto lava (32°25′26″N, 115°18′3″W)
CP09-04-1 14400 1200 196 279 1.42 16.4 10.7 0.81
CP09-04-2 98700 7900 201 137 0.683 97.7 6.9 0.78
CP09-04-4 87700 7000 322 227 0.705 132 3.9 0.74
CP09-04-5 5900 500 613 1282 2.09 20.9 3.5 0.71
CP09-04-6 117100 9400 141 47 0.334 71.7 3.9 0.74
CP09-04-9* 68.4 5.5 227 59 0.259 0.073 12.2 0.82
CP09-04-10 105000 8400 497 213 0.429 235 4.5 0.75
CP09-04-11 22000 1800 288 174 0.605 27.3 2.2 0.70
CP09-04-13 172 14 224 84 0.375 0.171 5.3 0.76
CP09-04-14 86600 6900 113 71 0.625 47.1 5.9 0.77
CP09-04-M1 533600 42700 76.7 40.8 0.531 188 9.3 0.73
CP09-04-M2 415800 33300 10.8 4.7 0.434 23.6 73.9 0.86

Cerro Prieto sedimentary enclave (32°25′21″N, 115°18′45″W)
CP0702D-1 901 72 207 85 0.410 0.818 4.2 0.74
CP0702D-2 26400 2100 344 107 0.311 39.4 4.5 0.75
CP0702D-3 389 31 35.8 20.5 0.573 0.067 8.0 0.78
CP0702D-4 8400 700 543 409 0.753 20.9 3.4 0.72
CP0702D-5* 78.0 6.2 193 132 0.683 0.064 2.1 0.67
CP0702Dr-1 5800 500 144 19 0.135 3.67 6.6 0.79
CP0702Dr-2 3500 300 140 26 0.188 2.08 4.0 0.76
CP0702Dr-3 2200 200 258 32 0.123 2.38 3.5 0.74
CP0702Dr-4 3300 300 64.3 50.6 0.787 1.01 3.3 0.73
CP0702Dr-5 15700 1300 136 41 0.297 9.32 4.4 0.76
Average age: 73 ± 7 ka (n = 2)

Roca Consag lava (31°6′45″N, 114°29′17″W)
RC01-24A-1 75.1 6.0 161 263 8.55 1.64 2.2 0.62
RC01-24A-2* 53.1 4.3 80.3 38.9 2.08 0.485 6.2 0.78
RC01-24A-3* 53.1 4.2 176 107 3.47 0.609 4.4 0.72
RC01-24A-4* 36.4 2.9 60.2 30.2 2.76 0.503 3.4 0.73
RC01-24A-5* 59.8 4.8 95.7 35.4 2.22 0.370 5.3 0.75
RC01-24A-6* 42.5 3.4 280 132 6.33 0.469 3.9 0.73
RC01-24A-7* 54.5 4.4 500 301 6.41 0.602 4.4 0.75
RC01-24A-8* 30.8 2.5 233 46 0.990 0.198 8.3 0.79
RC01-24A-9* 50.2 4.0 71.7 29.8 1.82 0.415 5.8 0.77
RC01-24A-10* 51.7 4.1 185 54 2.47 0.290 7.6 0.78
RC01-24A-11* 41.6 3.3 39.6 17.7 1.42 0.447 6.6 0.78
RC01-24A-12* 38.0 3.0 208 103 1.33 0.495 4.4 0.76
Average age: 43 ± 6 ka (n = 11; mean square of weighted deviates [MSWD] = 7.1)

*Used for average.
†Ft—correction factor for 4He ejection errors 1σ.
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was collected in the periphery of the Cerro 
Prieto dome where autobrecciated lava inter-
fi ngers with surrounding playa sediments. In 
both cases, however, (U-Th)/He ages for xeno-
crystic zircons scatter widely between ca. 68 ka 
and ca. 550 Ma (Fig. 5B; Table 1). We attribute 
this to incomplete degassing of zircons, sug-
gesting that the lava entrained the crystals (and 
enclaves) only shortly before cooling and solidi-
fi cation. The two youngest (i.e., most degassed) 
xenocrysts overlap within uncertainty and yield 
an average age of 73 ± 7 ka (n = 2). This is simi-
lar to the U-Th zircon crystallization age for 
the few non-xenocrystic zircons in Cerro Prieto  
lava (a maximum estimate for the eruption 
age). Collectively, these data strongly suggest 
that the eruption of Cerro Prieto occurred later 

than previously indicated based on compara-
tively imprecise K-Ar ages averaging ca. 100 ka 
(Reed et al., 1984), although the exact eruption 
age remains poorly constrained. Regardless, the 
presence of undegassed zircon xenocrysts has 
important implications for the timing of con-
tamination of Cerro Prieto magmas en route to 
surface (see following).

Seven intermediate to microgranitic Cerro 
Prieto subsurface samples were processed, but 
only two microgranite samples in wells NL-1 
and E-30 yielded zircon and allanite of late 
Pleistocene age (Table DR1 [see footnote 1]). 
The other samples contained exclusively older 
zircon, most likely from contamination of the 
cuttings by fragments from the overlying sedi-
ments (Table DR2 [see footnote 1]). For the 
microgranites, the resulting U-Th isochron ages 
overlap within uncertainty (36 +15/–14 ka and 
42 +15/–14 ka (Fig. 6D). The MSWD value of 
1.2 and 1.8 for NL-1 and E-30, respectively, 
suggests negligible nonanalytical scatter. Two-
point model isochrons can be calculated using 
either Cerro Prieto lava or NL-1 allanite under 
the assumption that they were in isotopic equi-
librium with zircon at the time of crystallization. 
In both scenarios, there would be a signifi cant 
portion of zero-age zircon in the E-30 popula-
tion, but because of low U concentrations, the 
precision of individual model ages is limited. 
In any case, the data for subsurface zircon are 
indicative of magma presence at shallow lev-
els within the Cerro Prieto basin at ca. 40 ka 
or younger.

Roca Consag

Roca Consag zircons are overwhelmingly 
xenocrystic (Fig. 8B), with the youngest U-Pb 
zircon ages at ca. 120 ka (n = 2). One of these 
zircon crystals (RC z19) also displays U-series 
disequilibrium with (230Th)/(238U) = 0.85, attest-
ing to its young age (Tables DR1 and DR2 
[see footnote 1]). An outstanding feature in the 
Roca Consag zircon population is a dominant 
ca. 1 Ma age peak, signifi cantly predating the 
younger population (Fig. 8B). This implies zir-
con recycling from a previously undiscovered 
Pleistocene source in the Wagner basin. The 
abundance of older crystals is likely due to a 
contribution of Colorado River sediment to the 
zircon population in Roca Consag lavas. The 
(U-Th)/He zircon ages for Roca Consag were 
calculated without disequilibrium corrections 
because their old crystallization ages imply sec-
ular equilibrium (Fig. 5C; Table 1). The average 
(U-Th)/He age is 43 ± 6 ka (n = 11; MSWD = 
7.1 for individual 2σ errors of 16%). This aver-
age excludes the smallest grain (zRC-1), with 
its signifi cant age uncertainty because of an 
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unusually  large α-ejection correction. We adopt 
this average of 43 ka as the eruption age of Roca 
Consag. The elevated MSWD is likely due to 
unrecognized systematic uncertainties regard-
ing U and Th zonation of the crystals, and we 
account for this by multiplying the age uncer-
tainty with the square-root of the MSWD.

CHEMICAL COMPOSITIONS

Whole-Rock Major and Trace Elements

New and published whole-rock analyses for 
northern Gulf of California igneous rocks indi-
cate substantial compositional diversity rang-
ing from basalt to high-silica rhyolite (Fig. 3; 
Table 2). A characteristic difference between 
Salton Buttes and Cerro Prieto is the strongly 
bimodal character of the Salton Buttes lavas and 
xenoliths, whereas Cerro Prieto surface and sub-
surface rocks have a dominantly intermediate 
population (Fig. 3). Despite these differences, 
end-member compositions are almost indistin-
guishable: The least altered (based on low-K) 
gabbros from Cerro Prieto are equivalent to those 
at the Salton Buttes, and high-silica end-member 
compositions (Cerro Prieto microgranite; Salton 
Buttes rhyolite and granophyre) equally overlap.

A kinked trend in Al2O3 versus SiO2 with a 
peak at SiO2 = 62 wt% exists for Cerro Prieto 
intermediate rocks, which also shows a subtle 
break in slope for CaO and MgO versus SiO2. 
This clearly rules out binary mixing as a mecha-
nism for generating intermediate compositions. 
The trends in Figure 3 are broadly consistent 
with the increasing abundance of plagioclase in 
the fractionating assemblage, but similar varia-
tions can result from variable degrees of partial 
melting of hydrous basalt at low to intermediate 
H2O partial pressure P(H2O) (<170 MPa; Thy 
et al., 1990). Importantly, experimental glass 
compositions for partial melting of hydrated 
basalt under higher P(H2O) between 300 and 
500 MPa (Thy et al., 1990) are higher in Al2O3 
than observed for Cerro Prieto rocks (Fig. 3B). 
K2O broadly increases with increasing SiO2, but 
most compositions plot above values permissive 
for closed-system fractional crystallization of 
MORB. Although major-element compositional 
trends are broadly similar for MORB fractional 
crystallization and partial melting of MORB-type 
lower crust (France et al., 2010), the presence of 
excess K2O (Fig. 3E) suggests that closed-system 
fractional crystallization of a MORB parent can-
not be the sole process that produced felsic melts 
in the northern Gulf of California. For the basaltic 

xenoliths, the presence of amphibole indicates 
higher degrees of hydration, compared to clino-
pyroxene-bearing gabbros in Cerro Prieto wells.

Among trace elements plotted in Figure 3, 
Sr shows signifi cant scatter and deviates from 
the Ca trend. We attribute Sr mobility to hydro-
thermal alteration, which limits the use of Sr 
as a petrogenetic indicator (this also holds for 
87Sr/86Sr; see following). Zr abundances gen-
erally increase with SiO2, suggesting zircon-
undersaturated conditions throughout most of 
the magmatic differentiation path. For Cerro 
Prieto, this is consistent with the scarcity or 
absence of zircon in intermediate rocks and their 
exclusive presence in microgranites.

MORB-normalized trace elements for mostly 
mafic to intermediate compositions (Cerro 
Prieto  and Roca Consag; Fig. 3) are enriched 
in fl uid-compatible elements—typically inter-
preted as an indicator for fl uid addition to the 
mantle during subduction. Comparison with 
regional subduction-related volcanic rocks (San 
Luis Gonzaga volcanic fi eld; Martín et al., 2000) 
shows that similar enrichments exist for equiva-
lent SiO2 (ranging between ~54 and ~67 wt%), 
including a prominent negative Nb anomaly. 
Positive Sr anomalies indicate the presence of 
cumulate plagioclase in some intrusive samples.
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Figure 7. U-Th zircon and whole-
rock data (activities indicated 
in parentheses) for (A) Salton 
Buttes lava, (B) Salton Buttes 
granophyre, (C) Cerro Prieto 
lava, and (D) Cerro Prieto sub-
surface intrusives. Data in A 
and B are from Schmitt et al. 
(2013); other data are from 
this study. Panels A and B show 
model isochron ages based on 
pairing zircon with whole-rock 
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con isochrons and error  enve-
lopes from regression of the 
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parison to paired whole-rock 
(allanite) and zircon model iso-
chron ages.
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Whole-Rock Isotopic Compositions

Relative to bulk earth, εNd is elevated for all 
magmatic compositions with the most positive 
values in basaltic xenoliths from Salton Buttes 
and microgabbros from Cerro Prieto (εNd = +8.9; 
Fig. 9; Table 2). These values closely overlap 

with those of regional MORB lavas (East Pacifi c 
Rise, and Alarcon basin), and they imply that 
the mantle source underneath the Salton Trough 
and Cerro Prieto basin is asthenospheric mantle , 
similar to the mantle underneath oceanic spread-
ing systems (cf. Lizarralde et al., 2007). Cerro 
Prieto and Roca Consag lava samples fall on 

a trend with anticorrelated 87Sr/86Sr and εNd, as 
expected for magmatic mixing and/or assimila-
tion involving crustal sources such as Peninsu-
lar Ranges batholith or metasedimentary rocks 
(Fig. 9). Subsurface samples (including Cerro 
Prieto microgabbros) are displaced from the 
depleted-mantle trend toward elevated 87Sr/86Sr 
(Fig. 9). This is also the case for the Salton 
Buttes rhyolite lava and a granophyre xenolith 
(Fig. 9). We interpret this as the result of Sr 
exchange with sedimentary wall rock during 
hydrothermal alteration in an active geothermal 
fi eld. Although no consistent trend in εNd versus 
SiO2 exists over the entire data set (Fig. 3H), 
there are two delineating end members: (1) εNd 
is nearly invariant over the entire range of SiO2 
for Cerro Prieto gabbro and microgranite, which 
is indicative of closed-system magma differen-
tiation; and (2) εNd systematically decreases with 
increasing SiO2 for intermediate Cerro Prieto 
samples, which potentially indicates that frac-
tional crystallization is coupled to assimilation-
fractional crystallization (AFC).

U-Th whole-rock isotopic compositions for 
Salton Buttes and Cerro Prieto plot to the left of 
the equiline (Fig. 6; Table 3). This is character-
istic for magmas generated by decompression 
melting of the mantle, in the absence of a high-U 
fl uid-mobile component. Their (238U)/(232Th) 
overlaps with MORB compositions from the 
East Pacifi c Rise at 21°N, with the exception 
of the extremely low U/Th for Cerro Prieto 
lava. This is likely due to secondary altera-
tion (causing U-loss), which is also indicated 
by strong (234U)/(238U) disequilibrium, and thus 
Cerro Prieto lava is not further considered here. 
The comparatively low (230Th)/(238U) relative 
to MORB could indicate protracted differen-
tiation time scales (i.e., aging of the source over 
200 k.y.). We, however, favor mixing with and/or 
assimilation of crustal rocks in secular equilib-
rium because of the isotopic heterogeneity in 
εNd (143Nd/144Nd) and 87Sr/86Sr (Fig. 10) and the 
decrease in εNd with increasing SiO2 (Fig. 3H).

Zircon Trace Elements and Oxygen Isotopes

Because hydrothermal overprint affected sub-
surface samples, we used trace elements and 
oxygen isotopic compositions of zircon as petro-
genetic indicators (Figs. 11–13; Tables DR3 and 
DR4 [see footnote 1]). Zircon’s imperviousness 
to hydrothermal alteration is demonstrated by 
the preservation of highly variable oxygen iso-
topic compositions in detrital zircon crystals 
from the same depth intervals as the magmatic 
zircons from dikes and sills encountered in the 
Cerro Prieto and Salton Sea wells. The hetero-
geneity in δ18O for detrital zircon contrasts with 
the oxygen isotopic homogeneity of young 
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magmatic zircons in individual samples, indi-
cating the absence of oxygen isotopic exchange 
between zircon and fl uids in the modern geo-
thermal system (Fig. 12). Magmatic zircon 
δ18O values for Salton Buttes lavas and basaltic 
xenoliths (Schmitt and Vazquez, 2006) fall into a 
broad range averaging ~5‰ (±1‰; Fig. 12). This 
is broadly comparable to two zircons in Cerro 
Prieto  lavas that were suffi ciently large to be ana-
lyzed for δ18O (Fig. 12). Salton Sea subsurface 
lavas (Schmitt and Hulen, 2008) are also similar 
in their zircon δ18O values (Fig. 12), and overall, 
these values overlap with those of oceanic  crustal 
zircon (Grimes et al., 2011). Cerro Prieto  micro-
granite zircons are strongly depleted in δ18O, with 
average values of ~2‰. These values fall below 
mantle values (5.3‰ ± 0.3‰; Valley, 2003) and 
require substantial exchange with meteoric water 
in the source rocks for the microgranite lavas, 
consistent with similarly low values for Salton 
Buttes granophyre zircons (Schmitt and Vazquez, 
2006). Roca Consag Quaternary zircon averages 
δ18O = 6.0‰ (±0.9‰; Fig. 12), the highest values 
for non-xenocrystic zircon present in the north-
ern Gulf of California samples, indicating a com-
paratively high proportion of continental crust in 

the source magma for the ca. 1 Ma Roca Consag 
zircon population.

Zircon trace elements (including Ti and 
REEs; Table DR3 [see footnote 1]) for Salton 
Buttes (Schmitt and Vazquez, 2006) and Cerro 
Prieto overlap with values for oceanic crustal 
zircon (Fig. 11). In the case of zircon from rhyo-

lite and dacite lavas, trace-element compositions 
straddle the lower limit determined for continen-
tal crustal zircon, whereas zircons from Salton 
Buttes basaltic xenoliths and Cerro Prieto micro-
granites plot below the continental crustal fi eld. 
Roca Consag zircon crystals in the ca. 1 Ma 
age population, by contrast, have trace-element 
compositions that are consistent with continental 
crustal sources. This is also the case for detrital 
zircon crystals from Cerro Prieto wells. Zircon 
crystallization temperatures of 700–800 °C 
were estimated from Ti-in-zircon thermometry 
(Fig. 13; Ferry and Watson, 2007). These are 
temperature minima because they were calcu-
lated for titanium oxide activity aTiO2

 = 1 and 
silica activity aSiO2

 = 1. The presence of quartz 
in the microgranites indicates aSiO2 

= 1, but aTiO2
 

is subunity because of the absence of rutile. If, 
for example, zircon crystallization would occur 
at aTiO2

 = 0.5 and aSiO2
 = 1, this would elevate 

zircon crystallization temperatures by ~70 °C 
(Ferry and Watson, 2007). One exception is zir-
con in quartz-free basaltic xenoliths; in this case, 
subunity aSiO2

 would be compensatory with aTiO2
 

<1. Regardless of these uncertainties, zircon Ti 
abundances and model crystallization tempera-
tures are similar to those of oceanic zircons (Fig. 
13). This is an important constraint on the con-
ditions of zircon crystallization in basalt-derived 
melts that requires temperatures signifi cantly 
below basalt liquidus temperatures.

DISCUSSION

Timing of Synrift Magmatism in 
the Northern Gulf of California

New and recently published (U-Th)/He, 
U-Th, and U-Pb ages constrain late Pleistocene 
to Holocene pulses of magmatism within the 
northern Gulf of California rift basins: Surface 
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volcanism in the Salton Buttes occurred only 
~2.5 k.y. ago (Schmitt et al., 2013), the erup-
tion of Cerro Prieto is <80 ka as indicated by the 
least radiogenic 4He in xenocrystic zircon, and 
Roca Consag erupted at ca. 40 ka (this study). 
These ages for volcanism in these rift basins 
imply a very recent heat pulse for the associated 
geothermal reservoirs. This has been previously 
proposed on the basis of detrital K-feldspar 
thermochronology for the Salton Sea geother-
mal reservoir, indicating present-day peak tem-
peratures that could not have been maintained 
for more than a few thousand years (Heizler and 
Harrison, 1991). Moreover, young U-Th zircon 
crystallization ages from subsurface samples 
indicate that intrusive magmatism was coeval 
with eruptive activity, both within the Salton 
Trough and Cerro Prieto basins. The combined 
evidence from U-Th zircon crystallization ages 
reveals protracted magmatic activity within 
these rift basins throughout the late Pleistocene 
into the Holocene.

With the exception of Roca Consag (see fol-
lowing), all rocks studied here have a signifi -
cant abundance of juvenile zircons. In samples 
where late Pleistocene to Holocene zircons are 
present, they lack xenocrystic cores. Although 
abundant older crystals exist in subsurface 
samples and lavas such as Cerro Prieto, there 
are two indications that these are not truly mag-
matic xenocrysts: (1) In the case of cuttings 
from subsurface igneous rocks, the abundance 
of older crystals correlates with the (visually 
estimated) abundance of sediment fragments 

that were entrained by air-drilling, and (2) in 
lava samples, there is residual radiogenic 4He 
in pre-Quaternary zircons, which indicates that 
these crystals were only briefl y in contact with 
the melt, and were likely entrained during the 
eruption.

In previous studies, older pulses (ca. 400–
500 ka) of volcanic and intrusive magmatism 
have been documented in the Salton Trough 
subsurface in close proximity to the Salton 
Buttes (Schmitt and Hulen, 2008). These older 
pulses, however, did not contribute to the zircon 
population in the younger lavas and xenoliths. 
This implies that silicic intrusions are small in 
volume and segregated. Alternatively, preexist-
ing zircon could have been resorbed by heating 
and addition of mafi c magmas in subsequent 
intrusive episodes. An intriguing observation in 
this context is the abundance of ca. 1 Ma zircon 
crystals with a continental crustal signature  in 
Roca Consag lavas. Roca Consag xeno crystic 
zircon crystals lack signifi cant radiogenic 
4He despite their age. Thus, they must have 
degassed, potentially during magmatic assimi-
lation. The source of the dominant ca. 1 Ma 
component in Roca Consag lavas remains enig-
matic in the absence of any rocks of equivalent 
age onshore. Quartz-phyric volcanic rocks 
with a K-Ar feldspar age of 1.4 ± 0.5 Ma have 
been encountered in the Altar basin (northwest-
ern Sonora) in an exploratory well at ~3.8 km 
depth (Pacheco et al., 2006). At present, we can 
only speculate that the ca. 1 Ma Roca Consag 
zircons originated from felsic magmas, which, 
based on high δ18O and trace-element patterns 
for zircon, had a more continental affi nity than 
younger zircon-crystallizing magmas in the 
Salton and Cerro Prieto basins. This permits us 
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to bracket the onset of magmatism with oceanic  
affi nity in the northern Gulf of California 
between ca. 1 Ma (“continental crustal” zircons 
in Roca Consag) and ca. 0.5 Ma (“oceanic” zir-
cons in buried Salton Buttes lavas), although 
we acknowledge that this is highly tentative 
because of the very limited availability of igne-
ous rocks for this critical age range.

MORB versus Continental Crustal Sources

Geophysical models remain ambiguous with 
regard to the state of continental rupture and 
oceanic spreading in the northern Gulf of Cali-
fornia: Extrapolation of modern plate velocities 
implies largely uniform amounts of extension 
along the entire rift zone, but direct evidence 
for Pliocene–Pleistocene oceanic crust for-
mation such as magnetic striping is lacking 
(Lonsdale, 1989). Early proponents of oceanic 
crustal formation in the northern Gulf of Cali-
fornia have reasoned, on the basis of composi-
tional and isotopic similarities between MORB 
and basaltic xenoliths in the Salton Buttes, that 
rifting has proceeded there to a stage of oce-
anic crust formation (Herzig and Jacobs, 1994; 
Robinson et al., 1976). The origins of interme-
diate to silicic magmas and their relationships 
to basaltic magmas, however, have remained 
ambiguous. Crustal melting has been previ-
ously proposed (e.g., Reed et al., 1984), but 
this was based on geochemical indicators that 
subsequently proved to be unreliable, espe-
cially for rocks for which the composition may 
have been altered by hydrothermal activity or 
contaminated during emplacement in uncon-

solidated sediments: 87Sr/86Sr in particular is 
vulnerable to contamination because Sr typi-
cally decreases with differentiation, and thus 
differentiated rocks are more easily affected 
by entrainment of crustal xenoliths or sec-
ondary alteration. Consequently, we interpret 
the strong displacement of subsurface rocks to 
the right of plausible magmatic mixing/assimi-
lation trends in the 87Sr/86Sr versus εNd diagram 
(Fig. 9; Schmitt and Hulen, 2008) as a result of 
Sr-isotopic exchange between rock and hydro-
thermal fl uid. Hence, for constraining magma 
sources, we restrict our discussion in the fol-
lowing to fl uid-insensitive indicators such as 
whole-rock Nd isotopes, and trace elements 
and oxygen isotopes in magmatic zircons.

Salton Buttes and Cerro Prieto have εNd val-
ues in the least differentiated (basaltic) rocks 
that are strikingly similar to East Pacifi c Rise 
and Alarcon lavas, where seafl oor spreading is 
unambiguous (Fig. 9). This suggests that basal-
tic magmas along strike of the Gulf of California 
share a common asthenospheric mantle source. 
Even some of the most felsic rocks have Nd-
isotopic compositions that are identical to those 
of basalts (Fig. 9). Although some of the inter-
mediate and felsic rocks are displaced to lower 
εNd values relative to regional mantle-derived 
rocks, they lack a clear signature for anatexis 
of continental crust as a signifi cant contributor 
to rift-related magmatism in the northern  Gulf 
of California (Fig. 9). Because xenocrystic zir-
cons in these lavas frequently retain pre-eruptive 
4He, caution has to be exercised in interpreting 
shifts to lower εNd as true magmatic mixing or 
assimilation trends. Instead, this trend could 

result from shallow contamination of the lavas 
during emplacement onto unconsolidated sedi-
ment. Regardless of the ambiguity whether 
mixing and/or assimilation took place via con-
tinental crustal anatexis or entrainment of soft 
sediments, binary mixing calculations indicate 
that even the most contaminated lavas contain at 
most ~20% of a continental crustal end member 
(Fig. 9).

In addition to fractional crystallization of 
MORB-type magmas with minor assimilation 
of continental crustal rocks, oxygen isotopes 
in zircon require another, previously largely 
overlooked, process in the genesis of rift-related 
magmas in the northern Gulf of California. The 
strong depletion of δ18O in microgranitic zircons 
coupled with high εNd indicate remelting of a 
hydrothermal MORB-type crust. Thus, juvenile 
crust of oceanic affi nity must have exchanged 
with meteoric waters during episodes of hydro-
thermal alteration, resulting in δ18O depletion 
relative to mantle values. Remelting of this 
hydrothermally altered oceanic crust through 
reinjection of fresh mafi c magma is a viable 
scenario to generate rhyolitic melts that directly 
inherit the low δ18O and MORB-like εNd of their 
source. Such low δ18O rhyolites are common in 
oceanic rifts such as Iceland (e.g., Martin and 
Sigmarsson, 2007), and some oceanic plagio-
granites also display depleted δ18O values 
(Grimes et al., 2011).

The combination of high εNd and low δ18O 
clearly rules out anatexis of any plausible conti-
nental crustal sources for Salton Sea and Cerro 
Prieto felsic magmas (Figs. 10 and 12). This is 
further supported by zircon trace elements: Low 
U relative to Yb distinguishes most Cerro Prieto  
microgranite zircons and those from Salton 
Buttes basaltic xenoliths from typical continen-
tal crustal zircon (Fig. 11). We emphasize that 
the zircon evidence (δ18O and trace elements) 
is crucial for detecting this mechanism because 
zircon records a primary magmatic signal that 
is not overprinted by alteration in the modern 
hydrothermal system. By contrast, whole-rock 
enrichment patterns in fl uid-mobile trace ele-
ments are less reliable, and could be errone-
ously interpreted as inherited from a hydrated 
mantle source, similar to that of subduction 
zones (Fig. 4). Based on whole-rock data alone, 
it thus would be diffi cult to distinguish between 
source enrichment (i.e., due to fl uid addi-
tion from a subducted slab) and hydrothermal 
alteration of basaltic crustal precursor rocks 
as the cause of the enrichment of fl uid-mobile 
trace elements (Fig. 4). By contrast, zircon geo-
chemistry is indicative of a MORB-like source, 
which is characterized by lower U/Yb com-
pared to arc-like and continental crustal rocks 
(Fig. 11).
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Felsic Magmas in Incipient Oceanic 
Spreading Centers with Thick 
Sedimentary Cover

Having established a dominantly MORB-
type source for mafi c magmas in the northern 
Gulf of California from Nd-isotopic evidence, 
we now discuss the styles of differentiation in 
the context of other occurrences of differenti-
ated magmas in mid-ocean-ridge environments. 
There, basaltic magmas are known to undergo 
signifi cant differentiation, which is recorded by 
evolved intrusive rocks in oceanic crustal seg-
ments (plagiogranites). Only occasionally and 
in specifi c tectonic settings, such as propagat-
ing rift tips or rift-transform intersections, have 
felsic mid-ocean-ridge lavas been documented 
(e.g., Schmitt et al., 2011; Wanless et al., 2010). 
In the Gulf of California province, oceanic 
spreading occurs in short (tens of kilometers) 
segments separated by transform faults, which 
is a broadly similar setting to rift-transform 
intersections where felsic mid-ocean-ridge 
lavas have erupted (e.g., Juan de Fuca; Schmitt 
et al., 2011). Fractional crystallization of paren-
tal basalt is a potential mechanism to generate 
SiO2-rich magmas, but this is inconsistent with 
geochemical data such as the observed K2O 
enrichments, and oxygen isotopic depletion, 
which cannot be explained by closed-system 
differentiation of pristine MORB. The presence 
of rhyolite melt pockets in basaltic xenoliths 
from the Salton Buttes is direct petrographic 
evidence that remelting of hydrated (amphi-
bole-bearing) mafi c rocks is viable for produc-
ing felsic melts (Robinson et al., 1976). Felsic 
melt pockets are also highly amenable to zircon 
crystallization (Schmitt and Vazquez, 2006). 
A comparison with glass compositions experi-
mentally produced for partial melting of basalt 
in the presence of H2O indicates that remelting 
occurred under fairly low H2O (and total) pres-
sures, likely <170 MPa (Fig. 3B; Thy et al., 
1990). This places the region of basaltic intru-
sion and remelting at a depth shallower than 
~7 km, close to the base of low-density and low-
seismic-velocity basin fi ll (Fig. 14; Fuis et al., 
1984; Parsons and McCarthy, 1996).

Given the limited range in δ18O of pristine 
MORB magmas, fractional crystallization is 
expected to produce intermediate to rhyolitic 
magmas that are only moderately elevated 
(by ~1‰–2‰) in δ18O relative to the parental 
magma compositions, translating into a narrow 
range of mantle-derived zircon (Valley, 2003) 
when accounting for oxygen isotopic fraction-
ation between zircon and melt (~1‰ at 800 °C; 
Trail et al., 2009). Magmatic compositions of 
Cerro Prieto and Salton Buttes lavas marginally 
overlap with this range, but their δ18O values are 

on average lower than mantle. Unequivocally 
low-δ18O zircons, such as crystals in Cerro Prieto 
microgranites and Salton Buttes granophyres, 
however, require a low-δ18O source compared to 
mantle-derived magmas. Isotopically light oxy-
gen typical for near-surface waters must have 
infi ltrated a mafi c source (inferred from high 
εNd) prior to remelting and differentiation.

Thus far, we have identifi ed two key similari-
ties for magmas in the Salton Trough and Cerro 
Prieto (Roca Consag lavas appear to be distinct, 
but because of limited exposure and sampling, 
this is a tentative conclusion): Mafi c end mem-
bers are similar and MORB-like, and melting 
of a MORB-type crust has occurred subsequent 
to hydrothermal alteration, producing high-
silica rhyolite magmas. As noted previously, 
a conspicuous distinction between both mag-
matic systems is that magma compositions are 
strongly bimodal in the Salton Trough, whereas 
intermediate intrusive and extrusive rocks exist 
at Cerro Prieto. Cerro Prieto intermediate rocks 
(barring E-30 3027 m microgranite) show a 
trend to lower εNd with increasing SiO2 (Fig. 

3H), which can be explained by AFC involv-
ing minor amounts of continental crustal rocks. 
Binary mixing between high-silica rhyolites 
and basalts can be ruled out because the inter-
mediate compositions deviate from isotopic and 
trace-element mixing trajectories (Fig. 3). The 
εNd values for intermediate rocks from Cerro 
Prieto and Salton Sea overlap, suggesting that 
the overall amount of assimilation is similar in 
both systems, although Cerro Prieto lavas have 
lower εNd. The presence of only partially 4He-
degassed detrital zircon crystals in Cerro Prieto  
lavas, however, indicates that at least some 
continental crustal material was incorporated 
late, and not via anatectic assimilation at depth 
(Fig. 5). This urges caution in using whole-rock 
analyses, which may have become contami-
nated upon ascent and emplacement at shallow 
depth, in particular during magma interaction 
with unconsolidated sediment.

There is strong evidence based on oxygen 
and Nd isotopes for remelting of young MORB-
type crust as a source for felsic magmas, as 
indicated by the horizontal trend in εNd versus 
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SiO2 (Fig. 3). Conclusive evidence for continen-
tal crustal anatexis as a signifi cant source for 
magmatism in the northern Gulf of California is 
absent, despite minor degrees of crustal assimi-
lation in some of the felsic lavas. This conclu-
sion holds for post–1 Ma magmas, whereas ca. 
1 Ma xenocrystic zircons in Roca Consag lavas 
display some continental affi nity. Even where 
minor assimilation is indicated by lower εNd 
values, this would at most amount to an ~20% 
crustal contribution (Fig. 9). Major elemental 
compositional differences between Salton Sea 
and Cerro Prieto exist, but they are of secondary 
relevance with regard to the main mechanisms 
of magma production in the mantle, and remelt-
ing of hydrothermally altered mafi c crust.

The deeper parts of the basin crust in the 
northern Gulf of California are postulated to 
be dominated by basaltic intrusions, yet unlike 
basins in the southern Gulf of California, sur-
fi cial basalts are absent. Thick sedimentary 
blanketing thus plays an important role for 
magmatic differentiation in rifts (Fig. 14), but 
not for basaltic magma generation, which is 
compositionally homogeneous along the entire 
extent of the Gulf of California rift zone (cf. 
Lizarralde et al., 2007). A major effect of the 
sedimentary basin infi ll is that it controls the 
neutral buoyancy level of magmas. Felsic mag-
mas have lower density and tend to ascend to 
shallower levels, whereas basaltic melts reach 
neutral buoyancy at deeper levels within the 
thick sedimentary pile. This is consistent with 
the presence of intermediate to felsic compo-
sitions of samples collected both in subaerial 
and submarine volcanoes in the northern Gulf 
of California. By contrast, basaltic to andesitic 
eruptions have only been reported in the Balle-
nas Channel and the lower Delfi n basin, where 
sedimentary deposits are thin (Martín et al., 
2013). As a second effect of high sedimenta-
tion rates, we propose that thermal insulation 
by sediments facilitates subsequent remelting of 
basaltic intrusions, which is aided by hydration 
during low-temperature water-rock interactions, 
also lowering the δ18O of the rocks.

CONCLUSIONS

Late Pleistocene to Holocene magmatism in 
the northern Gulf of California rift zone occurs 
in an environment characterized by high deposi-
tion rates of continent-derived detritus in narrow 
rift basins. Intrusion of this sedimentary pack-
age by mafi c to silicic magmas causes thermal 
overprint and metamorphism, but falls short of 
generating voluminous anatexis of sediments. 
Hydration of juvenile mafi c crust via deep 
circulation of meteoric fl uids occurs in these 
basins, lowering the oxygen isotopic composi-

tion and the solidus of mafi c rocks, which read-
ily exchange oxygen with fl uids. Remelting of 
newly formed oceanic-type crust underlying 
the sediments by intrusion of mantle-derived 
basalts is the dominant origin of felsic mag-
mas in this rift. Continental crustal sources, or 
subduction-metasomatized mantle, thus contrib-
ute only marginally, if any, to melt generation. 
In this respect, the lower crust in the rift basins 
of the northern Gulf of California—albeit dis-
tinct from typical oceanic crustal sequences by 
a thick overburden of sediments—has become 
fundamentally oceanic in nature. This study 
emphasizes the importance of single-crystal zir-
con analysis to see through the effects of near-
surface contamination by soft sediment–magma 
interaction, and pervasive hydrothermal altera-
tion, which are typical for rift basins fi lled by 
continent-derived detritus.
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